初中几何模型及常见结论的总结归纳
三角形的概念

三角形边、角之间的关系：①任意两边之和大于第三边（任意两边之差小于第三边）；②三角形内角和为
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（外角和为
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）；③三角形的外角等于不相邻的两内角和。

三角形的三线：(1)中线（三角形的顶点和对边中点的连线）;三角形三边中线交于一点（重心）
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如图，
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为三角形的重心，重心
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分中线长度之比为
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分别为三角形
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边上的中位线（三角形任意两边中点的连线），
[image: image10.wmf]DE

∥
[image: image11.wmf]BC

且
[image: image12.wmf]BC

DE

2

1

=

。

几何问题中的“中点”与“中线”常常是联系再一起的。因此遇到中点这样的条件（或关键词）我们可以考虑中线定理与中位线定理进行思考。

中线（中点）的应用：
①在面积问题中，中线往往把三角形的面积等分，如果两三角形高相同，我们往往把面积之比转化为底边之比。（面积问题转化为线段比的问题）如上图，我们可以得到
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②在涉及中线有关的线段长度问题，我们往往考虑倍长中线。
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如图，已知AB，AC的长，求AF的取值范围时。我们可以通过倍长中线。利用三角形边的关系在三角形ABD中构建不等关系。（
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(2)角平分线（三角形三内角的角平分线）；三角形的三条内角平分线交于一点（内心）
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如图，
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为三角形ABC的内心（内切圆的圆心）；内心
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到三边的距离相等
[image: image19.wmf]r

OD

OF

OE

=

=

=

（角平分线的性质定理）；
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的面积，
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的周长）；
关于角平分线角度问题的常见结论：
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角平分线的性质定理：
角平分线上的点到角两边的距离相等；到角两边距离相等的点在这个角的角平分线上。
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如图，
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（3）垂线（三角形顶点到对边的垂线）；三角形三条边上的高交于一点（垂心）
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如图，
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为三角形ABC的垂心，我们可以得到比较多的锐角相等如
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等。因此垂线（或高）这样的条件在题目中出现，我们往往可以得出比较多的锐角相等。（等角或同角的余角相等），此外，如果要求垂线段的长度或与垂线段有关的长度问题，我们通常用面积法求解。在上图中，若已知
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的长度，求
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的长。

特别注意：在等腰三角形中，我们通常所指的三线合一就是指中线、角平分线、高线。三线合一：已知三角形三线中的任意两个条件是重合的，那么就可以得出第三条线也是重合的。在具体运用时，我们往往时把三线合一的等腰三角形补充完整再加以运用。
三角形全等

三角形全等我们要牢记住它的五个判定方法。（SSS,SAS,ASA,AAS,HL）
在具体运用时，我们需要找出判定三角形全等的各种条件，不外乎是关于边相等或相等的问题。

对于寻找角相等：常有四种方法：①两条平行线被第三条直线所截得出的“三线八角”的结论；②对顶角相等；③锐角互余；④三角形的外角等于不相邻的两内角和。

对于寻找边相等：常有三种方法：①特殊图形中隐含的条件（如等腰三角形、等边三角形、菱形、正方形。。。。。）；②利用三线合一的正逆定理；③通过已有的全等三角形性质得出。

对于证明角相等，证明边相等，我们都要优先考虑边或角所在的三角形全等。（一定要注意对应）如果不能直接通过全等证明，我们就要转化角或转化边（用上面的几种方法）然后再考虑全等。

全等三角形的基本图形：

平移类全等；                       对称类全等；                     旋转类全等；
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几何问题中常用的模型
平行和中点

三角形（梯形）的中位线。

倍长中线构造全等（八字形全等）通常是构造以中点为交叉点的八字形。

平行和角平分线

往往试图寻找等腰三角形，转化为边相等或角相等。

直角和中点

直角三角形斜边长的中线长等于斜边的一半

中垂线（三线合一的模型）

求线段的长：①勾股定理；②把求的线段放在三角形中考虑相似。
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